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脳デコーディング 
機械学習による脳信号のパターン認識により 

意図や心的イメージを解読する方法 (Kamitani and Tong, 2005)

(Miyawaki, Uchida, Yamashita, 
Sato, Morito,Tanabe, Sadato, 
Kamitani, 2008)

(Horikawa, Miyawaki, 
Tamaki, Kamitani, 2013)

ロボット制御（BMI） 視覚像再構成 夢の解読
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painters’ works) than to the mask images. Participants
passively viewed a sequence of 16 s blocks of (i) multiple
original paintings (16 images presented); (ii) a fixation
cross; and (iii) multiple mask images. This sequence was
repeated five times for each run (a total of two runs).

Decoding session
The main fMRI session involved a 16-s stimulus block
and a 4-s response block repeated eight times per run
(four blocks for original images and four blocks for their
mask images; a total of 15 runs). In each stimulus block,
a single image (original or mask of Dali or Picasso)
was flashed at 1Hz. In the following response block,
participants used a joystick to indicate his/her guess
about the painter. The assignment of joystick move-
ments for Dali and Picasso was indicated on the display in
every block, and was randomized across blocks. A total
of 120 images (30 original images and 30 mask images
for each of Dali and Picasso) were presented in a
randomized order.

The data from the first 10 runs and the remaining five
runs were used for training and testing the decoder,
respectively. Note that an original image and its corres-
ponding mask image were presented within each of
training and test sessions.

Post-scanning questionnaire
After the fMRI experiment, we gave participants ques-
tionnaires asking whether they had seen the paintings
before the experiment. The trials involving the paintings
each participant reported he/she had seen before (art
majors, 34.2±15.3%; and non-art majors, 6.13±8.22%)
were excluded from the test data set used for the
evaluation of the decoder (results turned out to be similar
before and after the exclusion).

Functional MRI data acquisition
A 3T fMRI scanner (Signa Horizon; GE, Milwaukee,
Wisconsin, USA) was used to acquire T2*-weighted EPI
sequences (TR=2 s, TE=30ms, flip angle=701, slice
thickness= 6.0mm, slice gap=2.0mm, FOV=20 cm,
64! 64 in-plane matrix).

Voxel selection for decoding analysis
Voxels for decoding analysis were selected based on the
data measured in the functional localizer session. We
performed voxel selection because decoding accuracy is
often degraded by the presence of uninformative voxels.
We constructed a general linear model, and acquired
t values for each voxel by making a contrast of (original-
mask). The resulting t values were regarded as the
indices for voxel preference of paintings to unstructured
images. We selected 600 voxels with the highest
t values [t>2.43±0.51 (mean±SD across participants);
d.f.= 226] from the whole brain (see Figure, Supple-
mental Digital Content 1, http://links.lww.com/WNR/A17 for
the distribution of voxels). The number of voxels was
determined based on our preliminary experiments, in
which 500–600 voxels tended to lead to best perfor-
mance. This heuristic method for voxel selection by no
means guarantees an optimal solution [7], but it out-
performed other voxel selection methods in our pre-
liminary studies using similar stimuli.

Decoding analysis
Data samples for decoding analysis were created by
averaging the fMRI volumes within each 16-s stimulus
block [average of eight volumes, shifted by 4 s (= 2
volumes) to account for hemodynamic delays]. The
samples were labeled according to the painter (or the
participant’s guess). Other preprocessing steps were the
same as those described in [4].
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(a) ‘Neural art appraisal.’ A functional MRI activity pattern elicited by viewing a painting is analyzed by a statistical classifier/decoder (‘neural art
appraiser’) to make a prediction of whether the painting is created by Dali or Picasso. The decoder is trained on a separate dataset in advance.
(b) Decoding accuracy. The dashed line indicates the chance level (50%), error bars and asterisks denote standard deviations and significance
levels (difference from chance level and between the participant groups; *P<0.05; **P<0.01; ***P<0.001), respectively.
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(Yamamura, Sawahata, Yamamoto, 
Kamitani, Neuroreport 2009)

脳美術鑑定：Dali or Picasso?



物体認識のための視覚特徴抽出

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Convolutional Neural Network (CNN)  
(Krizhevsky et al., 2012)
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Object recognition in computer vision 
1. Extraction of higher-order features with invariances 
2. Matching to object-specific feature vectors → Object recognition



画像・テキストのデータマイニング技術と
デコーディング技術の連携による質感情報表現の探索
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ニューラルネットワークによる
画像・テキストデータ解析に
もとづく質感特徴抽出

fMRI計測信号からの
質感特徴予測を介した
脳内質感表現の探索
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研究計画
【研究組織】 
研究代表者: 神谷之康 (ATR、京都大学) 
連携研究者: 堀川友慈 (ATR)、間島慶 (京都大学)、原田達也 (東京大学)  

【研究内容】 
脳・画像・テキストデータを用いて新たな質感情報表現を発見・利用するため
のデータ駆動型アプロー チ 

１．質感語でタグ付けられた大規模自然画像データから、深層学習やコンピュー
タビジョンの手法を用いて、質感概念に関連する画像・言語特徴を抽出
（autoencoder、教師つき学習） 
２．データベース中の一部の画像を見た時の脳活動パターンをfMRIで計測し、
脳活動パターンから当該画像の質感関連特徴量を予測するデコーディングモデル
を構築、独立データで検証。 
３．脳から予測した質感関連特徴量の組み合わせにより画像を表現し、画像や
概念の同定や再構成が可能かを検証。 

7


